
Functional & Event 
Driven

another approach to domain modeling

Thursday 12 April 12



Debasish Ghosh

@debasishg on Twitter

code @ 
http://github.com/debasishg

blog @ 
Ruminations of a Programmer
 http://debasishg.blogspot.com

Thursday 12 April 12

http://github.com/debasishg
http://github.com/debasishg
http://debasishg.blogspot.com
http://debasishg.blogspot.com


Agenda

• Domain Models

• Why Functional Domain Models

• Event based architectures - Event Sourcing

• Duality between functional models & even 
based models

• A sample event sourced domain model 
implementation

Thursday 12 April 12



Domain Modeling
• We limit ourselves strictly to how the 

domain behaves internally and how it 
responds to events that it receives from 
the external context

• We think of a domain model as being 
comprised of the core granular 
abstractions that handle the business logic 
and a set of coarser level services that 
interacts with the external world

Thursday 12 April 12



Why Functional ?

• Pure with localization of side-effects

• Ability to reason about your model

• Expressive & Declarative

• Immutable

Thursday 12 April 12



A Functional Domain 
Model

• Built on (mostly) pure abstractions

• Pure functions to model domain behaviors

• Immutable artifacts

• .. and you get some parallelism for free

Thursday 12 April 12



Immutability

• Algebraic Data Types for representation of 
domain entities

• Immutable structures like type-lenses for 
functional updates

• No in-place mutation

Thursday 12 April 12



Representation as 
ADTs

case class Trade(account: Account, instrument: Instrument,
  refNo: String, market: Market,
  unitPrice: BigDecimal, quantity: BigDecimal,
  tradeDate: Date = Calendar.getInstance.getTime,
  valueDate: Option[Date] = None, 
  taxFees: Option[List[(TaxFeeId, BigDecimal)]] = None,
  netAmount: Option[BigDecimal] = None) {

  override def equals(that: Any) = 
    refNo == that.asInstanceOf[Trade].refNo
  override def hashCode = refNo.hashCode

}

Thursday 12 April 12



Representation as 
ADTs

// various tax/fees to be paid when u do a trade
sealed trait TaxFeeId extends Serializable
case object TradeTax extends TaxFeeId
case object Commission extends TaxFeeId
case object VAT extends TaxFeeId

Thursday 12 April 12



Pure functions as 
domain behaviors

// get the list of tax/fees applicable for this trade
// depends on the market
val forTrade: Trade => Option[List[TaxFeeId]] = {trade =>
  taxFeeForMarket.get(trade.market) <+> taxFeeForMarket.get(Other)
}

Thursday 12 April 12



Pure functions as 
domain behaviors

// enrich a trade with tax/fees and compute net value
val enrichTrade: Trade => Trade = {trade =>
  val taxes = for {
    taxFeeIds      <- forTrade // get the tax/fee ids for a trade
    taxFeeValues   <- taxFeeCalculate // calculate tax fee values
  }
  yield(taxFeeIds map taxFeeValues)
  val t = taxFeeLens.set(trade, taxes(trade))
  netAmountLens.set(t, 
    t.taxFees.map(_.foldl(principal(t))((a, b) => a + b._2)))
}

Thursday 12 April 12



Pure functions as 
domain behaviors

// combinator to value a tax/fee for a specific trade
val valueAs:
  Trade => TaxFeeId => BigDecimal = {trade => tid =>
  ((rates get tid) map (_ * principal(trade))) 
     getOrElse (BigDecimal(0))
}

// all tax/fees for a specific trade
val taxFeeCalculate:
  Trade => List[TaxFeeId] => List[(TaxFeeId, BigDecimal)] = {t => 
tids =>
  tids zip (tids map valueAs(t))
}

Thursday 12 April 12



Composability

Secret sauce ? Functions compose. We can 
pass functions as first class citizens in the 
paradigm of functional programming. We can 
use them as return values and if we can 
make them pure we can treat them just as 
mathematically as you would like to.

Thursday 12 April 12



Updating a Domain 
Structure functionally
• A Type-Lens is a data structure that sets up 

a bidirectional transformation between a 
set of source structures S and target 
structures T

• A Type-Lens is set up as a pair of functions:

• get S -> T
• putBack (S X T) -> S

Thursday 12 April 12



A Type Lens in Scala

a function that takes a 
trade and returns it’s reference no a function that updates a 

trade with a supplied reference no

// change ref no
val refNoLens: Lens[Trade, String] =
  Lens((t: Trade) => t.refNo,
          (t: Trade, r: String) => t.copy(refNo = r))

Thursday 12 April 12



Lens under Composition
• What’s the big deal with a Type Lens ?

✦ Lens compose and hence gives you a cool 
syntax to update nested structures within 
an ADT

def addressL: Lens[Person, Address] = ...
def streetL: Lens[Address, String] = ...
val personStreetL: Lens[Person, String] = 
  streetL compose addressL

Thursday 12 April 12



Lens under 
composition

val str: String =
  personStreetL get person

val newP: Person =
  personStreetL set (person, "Bob_St")

Using the personStreetL lens we may access or
set the (indirect) street property of a Person instance

Thursday 12 April 12



Functional updates using type 
lens

// change ref no
val refNoLens: Lens[Trade, String] =
  Lens((t: Trade) => t.refNo,
       (t: Trade, r: String) => t.copy(refNo = r))

// add tax/fees
val taxFeeLens: Lens[Trade, Option[List[(TaxFeeId, BigDecimal)]]] =
  Lens((t: Trade) => t.taxFees,
       (t: Trade, tfs: Option[List[(TaxFeeId, BigDecimal)]]) => 
t.copy(taxFees = tfs))

// add net amount
val netAmountLens: Lens[Trade, Option[BigDecimal]] =
  Lens((t: Trade) => t.netAmount,
       (t: Trade, n: Option[BigDecimal]) => t.copy(netAmount = n))

// add value date
val valueDateLens: Lens[Trade, Option[Date]] =
  Lens((t: Trade) => t.valueDate,
       (t: Trade, d: Option[Date]) => t.copy(valueDate = d))

Thursday 12 April 12



Managing States

• But domain objects don’t exist in isolation

• Need to interact with other objects

• .. and respond to events from the external 
world

• .. changing from one state to another

Thursday 12 April 12



A day in the life of a 
Trade object

created value date added

tax/fee added

net value computed ssi added

ready for settlement
a Trade object

Thursday 12 April 12



What’s the big deal ?
All these sound like changing states of a newly created

Trade object !! 

Thursday 12 April 12



• but .. 

• Changing state through in-place mutation is 
destructive

• We lose temporality of the data structure

• The fact that a Trade is enriched with tax/
fee NOW does not mean it was not valued 
at 0 tax SOME TIME BACK

Thursday 12 April 12



What if we would like to have our 
system rolled back to THAT POINT IN 

TIME ?

Thursday 12 April 12



We are just being lossy

Thursday 12 April 12



• The solution is to keep information in such a 
way that we have EVERY BIT OF DETAILS 
stored as the object changes from one state 
to another

• Enter Event Sourcing

Thursday 12 April 12



Event Sourcing
• Preserves the temporality of the data 

structure

• Represent state NOT as a mutable object, 
rather as a sequence of domain events that 
took place right from the creation till the 
current point in time

• Decouple the state of the object from its 
identity. The state changes over time, 
identity is IMMUTABLE

Thursday 12 April 12



Domain Events as 
Behaviors

NewTrade AddValueDate EnrichTrade

state = Created state = ValueDateAdded state = Enriched

persisted with timestamp t0

persisted with timestamp t1

persisted with timestamp t2

(t2 > t1 > t0)

Thursday 12 April 12



.. and since we store every event that hits the system we 
have the ability to recreate ANY previous state of the 

system starting from ANY point in time in the past

Thursday 12 April 12



Events and States
sealed trait TradingEvent extends Event

case object NewTrade extends TradingEvent
case object EnrichTrade extends TradingEvent
case object AddValueDate extends TradingEvent
case object SendOutContractNote extends TradingEvent

sealed trait TradeState extends State

case object Created extends TradeState
case object Enriched extends TradeState
case object ValueDateAdded extends TradeState

Thursday 12 April 12



The Current State
• How do you reflect the current state of the 

domain object ?

✦ start with the initial state

✦ manage all state transitions

✦ persist all state transitions

✦ maintain a snapshot that reflects the 
current state

✦ you now have the ability to roll back to 
any earlier state

Thursday 12 April 12



The essence of Event 
Sourcing

Store the events in a durable repository. They are 
the lowest level granular structure that model 
the actual behavior of the domain. You can 
always recreate any state if you store events 
since the creation of the domain object.

Thursday 12 April 12



The Duality
• Event Sourcing keeps a 

trail of all events that 
the abstraction has 
handled

• Event Sourcing does not 
ever mutate an existing 
record

• In functional 
programming, data 
structures that keep 
track of their history are 
called persistent data 
structures. Immutability 
taken to the next level

• An immutable data 
structure does not 
mutate data - returns a 
newer version every 
time you update it

Thursday 12 April 12



Event Sourced Domain 
Models

• Now we have the domain objects receiving 
domain events which take them from state 
A to state B

• Will the Trade object have all the event 
handling logic ? 

• What about state changes ? Use the Trade 
object for this as well ?

Thursday 12 April 12



Separation of concerns

• The Trade object has the core business of 
the trading logic. It manifests all state 
changes in terms of what it contains as data

• But event handling and managing state 
transitions is something that belongs to the 
service layer of the domain model 

Thursday 12 April 12



Separation of Concerns
• The service layer

✦ receives events from 
the context

✦ manages state 
transitions

✦ delegates to Trade 
object for core 
business

✦ notifies other 
subscribers

• The core domain layer

✦ implements core 
trading functions like 
calculation of value 
date, trade valuation, 
tax/fee handling etc

✦ completely oblivious 
of the context

Thursday 12 April 12



The Domain Service 
Layer

• Handles domain events and delegates to 
someone who logs (sources) the events

• May need to maintain an in-memory 
snapshot of the domain object’s current 
state

• Delegates persistence of the snapshot to 
other subscribers like Query Services 

Thursday 12 April 12



CQRS

• The service layer ensures a complete 
decoupling of how it handles updates 
(commands) on domain objects and reads 
(queries) on the recent snapshot

• Updates are persisted as events while 
queries are served from entirely different 
sources, typically from read slaves in an 
RDBMS

Thursday 12 April 12



In other words, the domain 
service layer acts as a state 

machine
Thursday 12 April 12



Making it Explicit

• Model the domain service layer as an FSM 
(Finite State Machine) - call it the 
TradeLifecycle, which is totally 
segregated from the Trade domain object

• .. and let the FSM run within an actor 
model based on asynchronous messaging

• We use Akka’s FSM implementation

Thursday 12 April 12



FSM in Akka

• Actor based

✦ available as a mixin for the Akka actor

✦ similar to Erlang gen_fsm 
implementation

✦ as a client you need to implement the 
state transition rules using a declarative 
syntax based DSL, all heavy lifting done by 
Akka actors

Thursday 12 April 12



notify observers

startWith(Created, trade)

when(Created) {
  case Event(e@AddValueDate, data) =>
    log.map(_.appendAsync(data.refNo, Created, Some(data), e))
    val trd = addValueDate(data)
    gossip(trd)
    goto(ValueDateAdded) using trd forMax(timeout)
}

initial state

match on event 
AddValueDate

start state of Trade 
object

move to next state
of Trade lifecycle update data 

structure

log the event

Thursday 12 April 12



Notifying Listeners

startWith(Created, trade)

when(Created) {
  case Event(e@AddValueDate, data) =>
    log.map(_.appendAsync(data.refNo, Created, Some(data), e))
    val trd = addValueDate(data)
    gossip(trd)
    goto(ValueDateAdded) using trd forMax(timeout)
}

Handle events & 
process data updates and state 

changes

Log events (event sourcing)

Thursday 12 April 12



State change - 
functionally

// closure for adding a value date
val addValueDate: Trade => Trade = {trade =>
  valueDateLens.set(trade, ..)
}

pure referentially transparent implementation

Thursday 12 April 12



Notifying Listeners

• A typical use case is to send 
updates to the Query 
subscribers as in CQRS

• The query is rendered from a 
separate store which needs to 
be updated with all changes that 
go on in the domain model

Thursday 12 April 12



Notifications in Akka 
FSM

trait FSM[S, D] extends Listeners {
  //..
}

trait Listeners {self: Actor =>
  protected val listeners = ..
  //..
  protected def gossip(msg: Any) =
    listeners foreach (_ ! msg)
  //..
}

Listeners is a generic trait to implement
listening capability on an Actor

Thursday 12 April 12



Event Logging

• Log asynchronously

• Persist the current state along with the 
data at this state

• Log the event e

log.map(_.appendAsync(data.refNo,
                      Created,
                      Some(data), e))

Thursday 12 April 12



Event Logging
case class EventLogEntry(entryId: Long,
  objectId: String,
  inState: State,
  withData: Option[Any], event: Event)

trait EventLog extends Iterable[EventLogEntry] {
  def iterator: Iterator[EventLogEntry]
  def iterator(fromEntryId: Long): Iterator[EventLogEntry]
  def appendAsync(id: String, state: State, 
    data: Option[Any], event: Event): Future[EventLogEntry]
}

Thursday 12 April 12



Log Anywhere
Thursday 12 April 12



Order preserving 
logging

class RedisEventLog(clients: RedisClientPool, as: ActorSystem)
  extends EventLog {
  val loggerActorName = "redis-event-logger"

  // need a pinned dispatcher to maintain order of log entries
  lazy val logger =
    as.actorOf(Props(new Logger(clients)).withDispatcher("my-pinned-dispatcher"),
    name = loggerActorName)

  //..
}

akka {
  actor {
    timeout = 20
    my-pinned-dispatcher {
      executor = "thread-pool-executor"
      type = PinnedDispatcher
    }
  }
}

Thursday 12 April 12



case class LogEvent(objectId: String, state: State,
  data: Option[Any], event: Event)

class Logger(clients: RedisClientPool) extends Actor {
  implicit val format =
    Format {case l: EventLogEntry => serializeEventLogEntry(l)}
  implicit val parseList =
    Parse[EventLogEntry](deSerializeEventLogEntry(_))

  def receive = {
    case LogEvent(id, state, data, event) =>
      val entry = EventLogEntry(RedisEventLog.nextId(), id, state, 
data, event)
      clients.withClient {client =>
        client.lpush(RedisEventLog.logName, entry)
      }
      sender ! entry
    //..
  }
  //..
}

logger is an actor that 
pushes event

data into Redis

Thursday 12 April 12



def appendAsync(id: String, state: State,
  data: Option[Any], event: Event): Future[EventLogEntry] =

    (logger ? LogEvent(id, state, data, event))
      .asInstanceOf[Future[EventLogEntry]]

Non-blocking : returns
a Future

Thursday 12 April 12



class TradeLifecycle(trade: Trade, timeout: Duration,
  log: Option[EventLog])
  extends Actor with FSM[TradeState, Trade] {
  import FSM._

  startWith(Created, trade)

  when(Created) {
    case Event(e@AddValueDate, data) =>
      log.map(_.appendAsync(data.refNo, Created, Some(data), e))
      val trd = addValueDate(data)
      gossip(trd)
      goto(ValueDateAdded) using trd forMax(timeout)
  }

  when(ValueDateAdded) {
    case Event(StateTimeout, _) =>
      stay

    case Event(e@EnrichTrade, data) =>
      log.map(_.appendAsync(data.refNo, ValueDateAdded, None,  e))
      val trd = enrichTrade(data)
      gossip(trd)
      goto(Enriched) using trd forMax(timeout)
  }
  //..
}

domain service as
a Finite State Machine

•  declarative
•  actor based
•  asynchronous
•  event sourced

Thursday 12 April 12



// 1. create the state machine
val tlc =
  system.actorOf(Props(
    new TradeLifecycle(trd, timeout.duration, Some(log))))

// 2. register listeners
tlc ! SubscribeTransitionCallBack(qry)

// 3. fire events
tlc ! AddValueDate
tlc ! EnrichTrade
val future = tlc ? SendOutContractNote

// 4. wait for result
finalTrades += Await.result(future, timeout.duration)
               .asInstanceOf[Trade]

Thursday 12 April 12



// check query store
val f = qry ? QueryAllTrades
val qtrades = Await.result(f,timeout.duration)
                   .asInstanceOf[List[Trade]]

// query store in sync with the in-memory snapshot
qtrades should equal(finalTrades)

Thursday 12 April 12



Summary

• Event sourcing is an emerging trend in 
architecting large systems

• Focuses on immutability and hence plays 
along well with functional programming 
principles

• Event stores are append only - hence n 
locks, no synchronization - very fast at the 
event storage layer

Thursday 12 April 12



Summary

• Complicated in-memory snapshot may have 
some performance overhead, but can be 
managed with a good STM implementation

• In designing your domain model based on 
event sourcing, make your core model 
abstractions meaty enough while leaving the 
service layer with the responsibilities of 
managing event handling and state 
transitions

Thursday 12 April 12



Thank You!

Thursday 12 April 12


