MASSIVELY SCALING
TO MILLIONS OF PLAYERS

A LEAGUE OF LEGENDS STORY

SCOTT DELAP

SCALABILITY ARCHITECT




ABOUT ME — SCOTT DELAP

& Scalability Architect
& Joined Riot in 2008
S @scottdelap

$ sdelap@riotgames.com



ABOUT RIOT GAMES

FOUNDED 500+ OFFICES IN

SANTA MONICA,
SEPT.2006 EMPLOYEES ST\LOUIS,

DUBLIN, SEOUL



OUR MISSION

TO BE THE MOST
PLAYER-FOCUSED

GAME COMPANY
IN THE WORLD.









LEAGUE OF LEGENDS:

SINGAPORE
MALAYSIA



J0  LEAGUE OF LEGENDS: INTRO

July 201 |
15 MIL REGISTERED

4 MIL MONTHLY
1.4 MIL DAILY
0.5 MIL PEAK CCU

3.7 MIL DAILY HRS

November 201 1
32.5 MIL REGISTERED

11.5 MIL MONTHLY
4.2 MIL DAILY

1.3 MIL PEAK CCU

10.5 MIL DAILY HRS



J A UNIQUE SCALING CHALLENGE

GGGGG

Social elements
require uniform access

GAME FEATURES
DO NOT ALWAYS SUPPORT

Crafting an enjoyable
user experience



HOW DO WE CREATE A SYSTEM THAT

MEETS THESE NEEDS?



AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING



PROBLEM #1:

HOW DO WE DEVELOP A
SYSTEM RAPIDLY...

... WHILE PLANNING FOR
FUTURE CAPACITY NEEDS?



T LEAGUE OF LEGENDS: TECH OVERVIEW

G A ME S

CLIENT EXPERIENCE

SERVER SIDE STACK

Apache Tomcat PHP Game Servers
Spring Cake Game Servers
ActiveMQ MySQL Game Servers
Coherence Game Servers

Hibernate

MySQL




T TODAY'S FOCUS

G A ME S

CLIENT EXPERIENCE

SERVER SIDE STACK

Apache Tomcat PHP Game Servers
Spring Cake Game Servers
ActiveMQ MySQL Game Servers
Coherence Game Servers

Hibernate

MySQL




m A TECH STACK WITH NEW & OLD ELEMENTS
Spring Spring Spring

Coherence Coherence Coherence Coherence

Hibernate Hibernate Hibernate Hibernate




BENEFITS OF TRADITIONAL JAVA

gMATURE OPEN SOURCE

(( ECOSYSTEM
G )
o>

< A ESTABLISHED TOOLS

Java g' LARGE POOL OF TALENTED

DEVELOPERS



ORACLE COHERENCE ‘ NoSQL SOLUTION

DATA STORED IN CACHES BY KEY

NUMEROUS USES

PROVIDES ELASTICITY



NoSQL ENABLING RAPID GROWTH

Horizontal scaling of Coherence greatly

simplified absorbing CCU growth over time

Design patterns enforced by Coherence
promoted feature level scaling as well




CACHING IN DETAIL

DAO

HIBERNATE / COHERENCE
v SHARDING LOGIC
MySQL AT APPLICATION LEVEL




EMBRACING CACHE ADVANTAGES

DAO

HIBERNATE COHERENCE




LEVERAGING ADVANTAGES

G A ME S

LEAGUE : 0 -0, | w0861 x 97014
LEGENDC > il — ®

PvP Game Mode Game Map Game Type

Classic Summoner's Rift Normal

5v5 Blind Pick
Co-op vs. Al Dominion

Twisted Treeline Normal
3v3 Draft Pick

|
|
|
‘ Custom Ranked Solo/Duo
I
{
\

R T GRID COMPUTING

Tutorials Draft Pick

Cla551c Summoner s let

k¢ S TRANSPARENT
‘W PARTITIONING




AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING



PROBLEM #2:

HOW DO WE QUICKLY
DEVELOP NEW FEATURES...

... WHILE LIMITING BUGS?



SIMPLE IS BEST

it 3 BILLION

CPU INSTRUCTIONS /SECOND

FAST

MEMORY NETWORK




Complexity

$

DON’T OVER DESIGN



RIG THE GAME

Divide inputs of algorithm, Continually coordinate

then parallel process




RIG THE GAME

THREAD 1 THREAD 2
@
oo"dina% ) Data
«';‘}OQ Data
S .
o°°
C Data
oo/b’. -
%% "
ata

Coordination

Data




RIG THE GAME

oom Jow J ew  ew [ om ]

THREAD 1 THREAD 2




T RIG THE GAME

G A ME S

THREAD 1 THREAD 2




AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING



PROBLEM #3:

HOW DO WE HANDLE NOT
JUST MONTHLY CHANGE...

...BUT HOURLY CHANGE?



CODE A DYNAMIC SYSTEM

HARDWARE FAILURES

LARGE SYSTEM
CHANGES AS

IT'S RUNNING




m CODE A DYNAMIC SYSTEM

TECHNOLOGIES W/ ELASTIC PROPERTIES

d v

Dynamic Cluster Recomposition Stateless Growth Patterns

NOT EVERY PIECE OF YOUR STACK HAS TO BE ELASTIC




CODE A DYNAMIC SYSTEM

All relevant configuration properties

are dynamic

Coherence near caches used to propagate
changes to nodes dynamically

Algorithms written so they are aware their
variables may change while running




m LARGER EXAMPLES OF DYNAMIC BEHAVIOR
THREAD POOLS

GGGGG

DYNAMICALLY CONFIGURABLE

Entire machine/feature combinations can be deployed & updated

Hotfixes require less downtime

Features can be deployed in advance of
release windows



AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING



PROBLEM #4:

WHAT HAPPENS WHEN WE
FOLLOW ALL THE RULES...

...AND STILL RUN
INTO [SSUES?



m SCALING BEST PRACTICES HAVE CONSEQUENCES

a Let’s get rid of some things so can do this easier
e What do we get rid of? | can’t decide...
° Plan B...instead of what you can’t do, I'll tell you what you can

e Follow these X rules and everything will be fine



m SCALING BEST PRACTICES HAVE CONSEQUENCES

MAP REDUCE

3 $ $

If all problems can

be written with a I’m taking away your
. g 7=y Pick two...

map step and o joins...

reduce step...




T CONSEQUENCES

Blog Entry

ATOMIC OPERATIONS OFTEN BECOME SCOPED
BY ENTRY VALUES AND ROOT OBJECTS



AN EXAMPLE OF A MISMATCH

o

SERVER

el ceioolll cenoolll s nod
B Y R R

B S D R
B S R R
B B R R

B R D R
U ccincolli ceinnolli seinooll CNoY

> ROOT OBJECT

AS GAMES ARE

ALLOCATED,

)

CHILD OBJECTS
ARE ADDED



AN EXAMPLE OF A MISMATCH

COMPLEXITY OF GAMES
CHILD OBJECTS PER SERVER




T ROOT OBJECTS AND CHILD OBJECTS

G A ME S

MACHINE

Game Instance

Game Instance

Game Instance




EVOLUTION OF AN ANTI-PATTERN

Child Object Child Object Child Object Child Object Child Object Child Object

2-50k 2-50k 2-50k 2-50k 2-50k 2-50k

<20k > >500k

BOUNDING FACTORS




THE PIPE IS FULL

MACHINE MACHINE MACHINE MACHINE MACHINE

Game Game Game Game Game
Instance Instance Instance Instance Instance

Game Game
Instance Instance

Game Game Game
Instance Instance

Instance

Game
Instance

Game
Instance

Game
Instance

Game
Instance

Game
Instance



DO WE REALLY HAVE ONE OBJECT?

MACHINE

Game Game Game
Game Instance Instance Instance Instance




SMALLER IS BETTER!

MACHINE MACHINE

ame ame ame ame ame ame
Instance Instance Instance Instance Instance Instance

MACHINE MACHINE MACHINE

Game Game Game Game Game Game Game Game Game
Instance Instance Instance Instance Instance Instance Instance Instance Instance




AGENDA

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING



PROBLEM #5:

HOW DO WE KNOW...

... WHEN WE HAVE A PROBLEM?



MONITOR EVERYTHING

LOGS WITH MILLIONS
OF OPERATIONS /DAY

~
e

|
|

e
T,
/ || | / / AR G
N | " N v &;\ / ir \'“4\ M

/
{
\/ JM/\




MONITOR EVERYTHING

WHAT HAPPENED HERE?

Networking issue!




m MONITOR EVERYTHING

G A ME S

Q Automate metrics gathering

e Spring performance monitoring interceptor

e Log out call stack on external calls

e Sample internal calls

e Automate reporting

e Trivial cost vs. benefit



MONITOR EVERYTHING

DATA IS USELESS WITHOUT AN EASY WAY TO VIEW IT

Top 50 EXTERNAL calls by volume
Current Import ‘ Provious Import ’
vy R Num Cais | 478 a1 m’.‘-?:'uu‘ Baseline Factor % diff ’Nrum Calis ’Av'gw‘l'lmo ‘ % of Total Calls | Baseline F:ctor!
3465105| 271 7.3848% 2.6471| -4.5827% 3572459 24 7.5898% 2.7742
3090954| 71 6.5695% 2.3612]-3.6516% 3155920 7 6.7049% 24507
24:5357} 0 5.1145% 1.8383(+3.3200% 2291151 0 4 8676% 1.7792
2406357| 7l s.1145% 1.8383|+3,3200% 2291151 7 4.8676% 17792
2138788)| 2| 45458% 1.6339|+0.1456% 2100940 2 4.4635% 16315
2C31441“ 24 4.3176% 1.5519| -4,7465% 2097979 24 44572% 1.6292
1552590| 0 3.2809% 1.1861|-4,3052% 1596050 0 3.3909% 1.23%4
1493027] 6 3.1733% 1.1406{ -4.4002% 1536489 6 3.2643% 1.1932
135&514: 20 2.8872% 1.0377| -4.0802% 1393162 20 2.9598% 1.0819|
1309&35‘; 0 2.7822% 1.0000 0.0000% 1287743 0| 2.7359% 1.0000
1106124| 23|  23510% 0.8450| -0.1746% 1090036 22 2.3158% 0.8465
1100421 7| 23388% 0.8406/+1.4988% 1066536 7 2.2659% 0.8282
1073141 17 2.2809% 0.8198|-4.1639% 1101554 17 2.3403% 0.8554
1072878| 3 22803% 0.8196| -4.1650% 1101296 3| 2.3307% 0.8552
1069397| 1 2.272%% 0.8169(+0.1457% 1050472 1 2.2318% 0.8157
1069391‘ 12 2.272%% 0.8169(+0.1455% 1050468 12 2.2318% 0.8157
1069390 o 22729% 0.8169]+0.1454% 1050469 0 22318% 0.8157
1059574| 2| 22520% 0.8094| -3.3607% 1078588 2| 2.2015% 0.8376
893122| 61| 1.8983% 0.6823| -2.4315% 00490 59 1.9131% 0.6993
B46345i 73 1.7988% 0.6465(+1.2110% 822617 63‘ 1.7477% 0.6388
. 776295| 1| 1.8409% 0.5930| -4.3052% 798025 1 1.6954% 0.6197
...LETS GREP THE RED ITEMS...



@ MONITOR EVERYTHING

G A ME S

[0, 100)
[100, 200)

500,400

(400, 500} 642

AUTOMATE NEXT 200, 700 r

[700, 800) 16

5 QUESTIONS /ANSWERS S

1100, 1200 1

(Why should they be manual?) (1200, 1300 0

[130?, 11.0? o

1500, 1900 ;

(1600, 1700) 0

(1700, 1800) 6

[1800, 1900) 45

[1900, 2000) 57
[2000,) 113



RECAP

& EMBRACING JAVA AND NoSQL
& SIMPLE IS BEST

& CODE A DYNAMIC SYSTEM

& SCALING BEST PRACTICES

& MONITOR EVERYTHING



QUESTIONS?

SCOTT DELAP

SCALABILITY ARCHITECT

sdelap@riotgames.com
td @scottdelap




