
SCOTT DELAP
SCALABILITY ARCHITECT

sdelap@riotgames.com

ABOUT ME – SCOTT DELAP

!   Scalability Architect

!   Joined Riot in 2008

!   @scottdelap

! sdelap@riotgames.com

ABOUT RIOT GAMES

500+

EMPLOYEES

OFFICES IN
SANTA MONICA,

ST. LOUIS,
DUBLIN, SEOUL

FOUNDED
SEPT.2006

OUR MISSION

TO BE THE MOST
PLAYER-FOCUSED
GAME COMPANY
IN THE WORLD.

Click to edit

LEAGUE OF LEGENDS: INTRO

2009 2010 2011

Show evolution: Add Three 3
animation. 2009. 2010. 2011

NORTH AMERICA
EUROPE

SINGAPORE
MALAYSIA

PHILIPPINES

CHINA
KOREA

TAIWAN

LEAGUE OF LEGENDS: INTRO

LEAGUE OF LEGENDS: INTRO

July 2011

15 MIL REGISTERED

4 MIL MONTHLY

1.4 MIL DAILY

0.5 MIL PEAK CCU

3.7 MIL DAILY HRS

November 2011

32.5 MIL REGISTERED

11.5 MIL MONTHLY

4.2 MIL DAILY

1.3 MIL PEAK CCU

10.5 MIL DAILY HRS

A UNIQUE SCALING CHALLENGE

Social elements
require uniform access

Crafting an enjoyable
user experience

GAME FEATURES
DO NOT ALWAYS SUPPORT

TRADITIONAL DECOMPOSITION

HOW DO WE CREATE A SYSTEM THAT
MEETS THESE NEEDS?

AGENDA

!   EMBRACING JAVA AND NoSQL

!   SIMPLE IS BEST

!   CODE A DYNAMIC SYSTEM

!   SCALING BEST PRACTICES

!   MONITOR EVERYTHING

HOW DO WE DEVELOP A
SYSTEM RAPIDLY…

…WHILE PLANNING FOR
FUTURE CAPACITY NEEDS?

PROBLEM #1:

LEAGUE OF LEGENDS: TECH OVERVIEW

CLIENT EXPERIENCE
PvP.net Adobe Air Flex Game Client C DirectX

SERVER SIDE STACK

Apache Tomcat

Spring

ActiveMQ

Coherence

Hibernate

MySQL

PHP

Cake

MySQL

Game Servers

Game Servers

Game Servers

Game Servers

TODAY’S FOCUS

CLIENT EXPERIENCE
PvP.net Adobe Air Flex Game Client C DirectX

SERVER SIDE STACK

Apache Tomcat

Spring

ActiveMQ

Coherence

Hibernate

MySQL

PHP

Cake

MySQL

Game Servers

Game Servers

Game Servers

Game Servers

A TECH STACK WITH NEW & OLD ELEMENTS

MySQL

Apache Tomcat

Spring

Apache Tomcat

Spring

Apache Tomcat

Spring

Coherence

Hibernate

Coherence

Hibernate

Coherence

Hibernate

Coherence

Hibernate

BENEFITS OF TRADITIONAL JAVA

MATURE OPEN SOURCE
ECOSYSTEM

ESTABLISHED TOOLS

LARGE POOL OF TALENTED
DEVELOPERS

ACCELERATING THE FOUNDATION WITH NoSQL

NoSQL SOLUTION ORACLE COHERENCE

DATA STORED IN CACHES BY KEY

NUMEROUS USES

PROVIDES ELASTICITY

NoSQL ENABLING RAPID GROWTH

Horizontal scaling of Coherence greatly
simplified absorbing CCU growth over time

1	

Design patterns enforced by Coherence
promoted feature level scaling as well

2	

CACHING IN DETAIL

SHARDING LOGIC
AT APPLICATION LEVEL

COHERENCE

DAO

MySQL

HIBERNATE

COHERENCE

EMBRACING CACHE ADVANTAGES

DAO

MySQL

HIBERNATE

LEVERAGING ADVANTAGES

GRID COMPUTING

TRANSPARENT
PARTITIONING

AGENDA

!   EMBRACING JAVA AND NoSQL

!   SIMPLE IS BEST

!   CODE A DYNAMIC SYSTEM

!   SCALING BEST PRACTICES

!   MONITOR EVERYTHING

…WHILE LIMITING BUGS?

PROBLEM #2:
HOW DO WE QUICKLY
DEVELOP NEW FEATURES…

SIMPLE IS BEST

JAVA

MEMORY

NETWORK

MODERN
CPU

3 BILLION
INSTRUCTIONS/SECOND

FAST

Complexity is the enemy of quality

DON’T OVER DESIGN

RIG THE GAME

Divide inputs of algorithm,
then parallel process

Continually coordinate

EASIER

RIG THE GAME

THREAD 1 THREAD 2

Coordination

Coordination

Coordination

Data

Data

Data

Data

Data

Work

Work

Work

Work

Work

Work

Work

Work

Work

Work

RIG THE GAME

Data Data Data Data Data

THREAD 1 THREAD 2

RIG THE GAME

THREAD 1 THREAD 2

Data Work

Data Work

Data Work

Work

Work

Data Work

Data Work

Data Work

Work

Work

AGENDA

!   EMBRACING JAVA AND NoSQL

!   SIMPLE IS BEST

!   CODE A DYNAMIC SYSTEM

!   SCALING BEST PRACTICES

!   MONITOR EVERYTHING

HOW DO WE HANDLE NOT
JUST MONTHLY CHANGE…

…BUT HOURLY CHANGE?

PROBLEM #3:

FIX?

HARDWARE FAILURES

CODE A DYNAMIC SYSTEM

LARGE SYSTEM
CHANGES AS
IT’S RUNNING

NEXT RELEASE?

DURING DOWNTIME?

CODE A DYNAMIC SYSTEM

Dynamic Cluster Recomposition Stateless Growth Patterns

TECHNOLOGIES W/ ELASTIC PROPERTIES

NOT EVERY PIECE OF YOUR STACK HAS TO BE ELASTIC

All relevant configuration properties
are dynamic

1	

Coherence near caches used to propagate
changes to nodes dynamically

2	

Algorithms written so they are aware their
variables may change while running

3	

CODE A DYNAMIC SYSTEM

LARGER EXAMPLES OF DYNAMIC BEHAVIOR

Hotfixes require less downtime
Features can be deployed in advance of

release windows

Entire machine/feature combinations can be deployed & updated

THREAD POOLS

=
DYNAMICALLY CONFIGURABLE

AGENDA

!   EMBRACING JAVA AND NoSQL

!   SIMPLE IS BEST

!   CODE A DYNAMIC SYSTEM

!   SCALING BEST PRACTICES

!   MONITOR EVERYTHING

WHAT HAPPENS WHEN WE
FOLLOW ALL THE RULES…

…AND STILL RUN
INTO ISSUES?

PROBLEM #4:

SCALING BEST PRACTICES HAVE CONSEQUENCES

Scaling	
 is	
 hard	
 1	

Let’s	
 get	
 rid	
 of	
 some	
 things	
 so	
 can	
 do	
 this	
 easier	
 2	

What	
 do	
 we	
 get	
 rid	
 of?	
 I	
 can’t	
 decide…	
 3	

Plan	
 B…instead	
 of	
 what	
 you	
 can’t	
 do,	
 I’ll	
 tell	
 you	
 what	
 you	
 can	
 4	

Follow	
 these	
 X	
 rules	
 and	
 everything	
 will	
 be	
 fine	
 5	

If all problems can
be written with a
map step and a
reduce step…

MAP REDUCE

I’m taking away your
joins…

NoSQL

Pick two…

CAP

SCALING BEST PRACTICES HAVE CONSEQUENCES

Blog Entry

CONSEQUENCES

ATOMIC OPERATIONS OFTEN BECOME SCOPED
BY ENTRY VALUES AND ROOT OBJECTS

COMMENT

AN EXAMPLE OF A MISMATCH

SERVER ROOT OBJECT

AS GAMES ARE
ALLOCATED,

CHILD OBJECTS
ARE ADDED

COMPLEXITY OF
CHILD OBJECTS

GAMES
PER SERVER

AN EXAMPLE OF A MISMATCH

ROOT OBJECTS AND CHILD OBJECTS

MACHINE

Game Instance

Name Players State

Game Instance

Name Players State

Game Instance

Name Players State

EVOLUTION OF AN ANTI-PATTERN

Child Object Child Object Child Object Child Object Child Object Child Object

MACHINE

2-50k 2-50k 2-50k 2-50k 2-50k 2-50k

<20k >500k
NETWORK TRANSFER FAST OBJECT SERIALIZATION

BOUNDING FACTORS

THE PIPE IS FULL

MACHINE

Game
Instance

Game
Instance

Game
Instance

MACHINE

Game
Instance

Game
Instance

Game
Instance

MACHINE

Game
Instance

Game
Instance

Game
Instance

MACHINE

Game
Instance

Game
Instance

Game
Instance

MACHINE

Game
Instance

Game
Instance

Game
Instance

DO WE REALLY HAVE ONE OBJECT?

Game Instance

Name Players

MACHINE

Game
Instance

State

Game
Instance

State

Game
Instance

State

SMALLER IS BETTER!

MACHINE
Game

Instance

State

Game
Instance

State

Game
Instance

State

MACHINE
Game

Instance

State

Game
Instance

State

Game
Instance

State

MACHINE
Game

Instance

State

Game
Instance

State

Game
Instance

State

MACHINE
Game

Instance

State

Game
Instance

State

Game
Instance

State

MACHINE
Game

Instance

State

Game
Instance

State

Game
Instance

State

AGENDA

!   EMBRACING JAVA AND NoSQL

!   SIMPLE IS BEST

!   CODE A DYNAMIC SYSTEM

!   SCALING BEST PRACTICES

!   MONITOR EVERYTHING

HOW DO WE KNOW…

…WHEN WE HAVE A PROBLEM?

PROBLEM #5:

LOGS WITH MILLIONS
OF OPERATIONS/DAY

MONITOR EVERYTHING

VS.

WHAT HAPPENED HERE?
Networking issue!

MONITOR EVERYTHING

Automate	
 metrics	
 gathering	
 1	

Spring	
 performance	
 monitoring	
 interceptor	
 2	

Log	
 out	
 call	
 stack	
 on	
 external	
 calls	
 3	

Sample	
 internal	
 calls	
 4	

Automate	
 reporGng	
 5	

Trivial	
 cost	
 vs.	
 benefit	
 6	

MONITOR EVERYTHING

…LETS GREP THE RED ITEMS…

DATA IS USELESS WITHOUT AN EASY WAY TO VIEW IT

MONITOR EVERYTHING

AUTOMATE NEXT
5 QUESTIONS/ANSWERS

(Why should they be manual?)

MONITOR EVERYTHING

RECAP

!   EMBRACING JAVA AND NoSQL

!   SIMPLE IS BEST

!   CODE A DYNAMIC SYSTEM

!   SCALING BEST PRACTICES

!   MONITOR EVERYTHING

QUESTIONS?

@scottdelap

SCOTT DELAP
SCALABILITY ARCHITECT

sdelap@riotgames.com

